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1. Introduction

Among the interestingnew phenomenadiscoveredin recentstudiesof two
dimensionalgravity modelsis the existenceof so-calleddiscretestates[1,21 in
the physicalspectrum.Models with a c < 1 conformalmatter sectorhavebeen
extensivelystudiedin the frameworkof BRSTquantization,wherethe physical
statesrepresentnontrivial cohomologyclassesof theBRST charge— the discrete
statesarethenclassespresentatonly acountablesetof momenta(seerefs. [3—81
and referencestherein).Perhapsevenmore striking is the fact that theyoccur
overarangeof differentghostsnumbers,quite unlike the physical spectrumof
critical stringtheoriesstudiedpreviously.
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Heuristically,thisnovel behaviourfor theBRST cohomologyarisesfrom two
distinctsources:first is theobviousdifferencein thattheworld-sheetscalarfields
havebackgroundchargesfor the non-criticalmodels (the correspondingFock
spaceis calledaFeigin—Fuchsmodule);second,in the caseof c < 1 matter,one
mustprojectfrom the Fockspacesontothe irreduciblemodulesof the Virasoro
algebrawhich comprisethe spectrumof such models.This projectioncan be
efficiently carriedout [5,61usingfreefield resolutionsof the irreduciblemodule
in termsof Feigin—Fuchsmodules[9]. Thus,bothsourcesaresomewhatrelated,
andin all casesthe problemof identifying the physicalstatesof the theorycait
bereducedto the computationof the BRSTcohomologyof a tensorproductof
two Feigin—Fuchsmodules.

Mathematically,the BRST cohomology discussedabove is an exampleof
semi-infinite cohomology [101 of the Virasoro algebra.Another class of al-
gebraswhosesemi-infinite cohomologyhasbeen well discussedis the affine
Kac—Moodyalgebras[10,111.It is natural, then,to look for the physical setting
of the correspondingBRST complexby analogywith that in 2D gravity. An
immediateexampleis in thecontextof the representationtheoryof affine Kac—
Moody algebras,a problemwhich is directly relevantto treatmentsof general
G/H cosetmodels[12,13]. In fact, whenformulatedas gaugedWess-Zumino--
Witten models [14,151,the G/H cosettheorieshaveanaturalnilpotentBRST
operator[161 actingon the tensorproduct of highestweight modulesof the
currentalgebraof G andH, respectively.Oneof the main themesof this paper
will be to analyzethis complex,and, in particularto provethat its cohomology
indeedyields the correctspectrumof statesfor the cosettheory.

The BRST formulationof cosettheoriesis afairly old problem.In the case
whenH is Abelian, its cohomologywas computedalreadyin the original paper
ref. [161.Fora generalG/H theory,anothercomplexwasproposedin ref. [17],
which was basedon the free field realizationof the WZW model with group
G. Although it was possible in this formulation to computethe cohomology
explicitly, andthusderive e.g.branchingfunctionsfor arbitrarycosettheories,
the constructioncould not berecastin a covariantformulation from the point
of view of conformalfield theory.So a completetreatmentof the correlation
functionsforthesemodelswasnotpossible.Theextremecasewherethecomplete
group is gaugedaway, GIG cosetmodels, definesa topological field theory.
It was recentlyobservedin this simpler setting that a suitablechoice of the
moduledescribingthe statesof the H (= G) sectorof the theory allowsjust
such a covariantdescription,as well as an explicit computationof the BRST
cohomology [18—22],in very much the samemanneras in 2D gravity. One
of the resultswepresenthereis a generaldiscussionof the BRST cohomology
for an arbitraryG/H cosettheory.We alsoconstructthe free field resolutions
for thesecosetmodels,anddemonstratehowthe correspondingextendedBRST
complexcanbe reducedto our previousformulation [171.
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As is notedseveraltimesabove,the computationshereappearsuperficially
similar to thosein 2D gravity. Indeedthereexist free field realizationsof affine
Kac—Moodyalgebras,and all physically interestingirreduciblehighestweight
modulesadmit resolutionsin termsof (twisted) Wakimoto modules [23—27],
which taketherole playedby Feigin—Fuchsmodulesin the caseof the Virasoro
algebra.Thus,onemayfirst establishthe BRST cohomologyof a tensorproduct
of two (oppositelytwisted) Wakimotomodules,andthenprojectonto the ir-
reduciblemoduleusinga suitableresolution.However,it will becomeapparent
thatthetwo contextsarereally quitedifferent,thedifferencebeingdueto arather
subtlepropertyof Wakimotomodules;namely,that theyareessentiallydefined
by their semi-infinitecohomologywith respecttoa (twisted) maximalnilpotent
subalgebraof the affine Kac—Moodyalgebra [23]. We will showthat in fact a
naturalmodificationof standardresultson semi-infinitecohomologyof Lie al-
gebras[11,28] allows a straightforwardcomputationof the BRST cohomology
for generalcosetmodelswithout everresortingto an explicit realizationof the
Wakimoto modules!This should be comparedto the situationin 2D gravity,
wherean analogouscohomologicalcharacterizationof Feigin—Fuchsmodules
doesnot exist unlessthey are isomorphicwith the Verma moduleor its dual.
This forcesoneto be more resourceful,by either trying to exploit the explicit
structureof theBRST operator[5], or by usingthe inherentS0(2,C) symmetry
of theproblemto reducethe computationso that it can be treatedby standard
methods[6].

The overall structureof this paperis that we first survey some techniques
of homological algebra,and thenshow how to use them in the computation
of the BRST cohomologyof cosetmodelsand2D gravity. After introducing
the basicobjectsof semi-infinitecohomologyin section2, we reviewstandard
computationaltechniquesin section3. They all utilize onekind or otherof spec-
tral sequence.The new result hereis a generalizationof the reductiontheorem
[11,28]. In section4 we discusscohomologicaldefinitionsof Verma modules
andWakimoto modulesof an affine Kac—Moodyalgebra,andsummarizethe
correspondingresolutionsof irreduciblehighestweightmodules.With this ma-
chineryin hand,section5 is devotedto analysingthe BRST formulationof the
cosetmodels.In section6 we compareit with thatof 2D gravity, andpresenta
simplified derivationof the discretestatesin c < 1 models.

2. Definitions andconventions
For a Lie algebrag anda module V, the standardLie algebracohomologyof

g with valuesin V (seee.g. [29,30]) is simply the cohomologyof the operator

d = >cA[m(eA) + ~7tgh(eA)], (2.1)
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in the complexC(g, V), where

C(g,V) = ~C~(g,V), C’~(g,V) = V®/\flg*. (2.2)
n>O

Here eA, A = 1,... ,dimg, are the generatorsof g, which act on V in the
representationt(.), and on ~P~g*,the nth exterior power of the (restricted)
dualg*, by ~ which is inducedfrom the coadjointactionof g on g*~The
ghostoperatorsc’~ = c(ehl*) canbeidentifiedwith thebasis{eA*} in g*, dualto
the generatorseA. It is convenientto introduceantighostoperators,bA = b (eA),
which arecanonicallyconjugateto cA, i.e. {bA,cB} = ô~.Thenwe mayidentify
71gj~~(eA) = — ~IBC c’~bCfABC, wherefABC arethe structureconstantsof g. One
maynoticethattogethertheghostscA andantighostsbA spantheClifford algebra
of g ~ g*, with acanonicalpairing i~x,y*) = y* (x). Onecan identify ~PIg*with
the subspaceof theghostFock spacewith ghostnumbern. In thisFock spaceall
c’~ actas creationoperators,andthe vacuum,to which we assignghostnumber
(order) zero, is annihilatedby all bA. The differentiald is nilpotentby virtue
of the Jacobiidentities.We will denotethe resultingcohomologyof ordern by
H’~(g,V).

There is anobviousdifficulty whenapplyingthis constructionto infinite di-
mensionalalgebras,asthedifferential (2.1) becomesaseriesin whichaninfinite
numberof termsmayact nontrivially on a given state in the complex.To cir-
cumventthisproblem,Feigin [10] proposedto replacethe spaceof forms~g*
by a suitablydefinedspaceof semi-infinite forms ~OC/2+•g* As will become
clear in amoment,his constructionhasits origin in the physiciststreatmentof
the infinite negativeenergyproblemin the quantizationof fermionfields.

To definethesemi-infinitecohomologywe will restrictboththepossiblealge-
brasandthe possiblemodules.Thefirst restriction is to i-gradedLie algebras.
Any suchg = ~ g~canbedecomposedas

(2.3)

where

= ~g

1, I = g0, n = ~g1. (2.4)
i<o i>O

Correspondingto (2.3), thespaceof semi-infinite forms~~/
2+•g* is definedas

theghostFockspace.F~,which is generatedby theghostandantighostoperators
actingon avacuumstatew

0 satisfying

b(x)w0 = 0, forxeN~n~, (2.5)

c(y*)wo = 0, fory*En~= (tE~n~)’. (2.6)

We assignto w0 theghostnumberequalzero,andwill refer to it as a “physical
vacuum”.Oneshouldnotethat,unlikepreviously,therearestateswithbothpos-
itive aswell as negativeghostnumbers,andthiswill leadto two-sidedcomplexes
lateron.
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To makethisdiscussionmoreconcrete,let usassumeg is oneof thefollowing:
— a finite dimensionalLie algebra,g,
— an (untwisted)affine Kac—Moodyalgebra, ~ (~= Lg ~ Ck ~ Cd is the

centrallyextendedloop algebraof g),
— the VirasoroalgebraVir.
We will denoteby ~+ and4~the spaceof positiverootsandnegativeroots

of g, respectively,andby ~ = 4+ U 4_ the total rootspace.Similarly for ~ we
have4, ~+ and4~.We recall that in termsof finite dimensionalroots we can
expressthe affine roots asfollows (4 = ~+ U4.~):

4+={c~+nôHteA+,n�0}U{cv+n~5HtE4_,n>0}U{nô~n>0}, (2.7)

whereô is the (imaginary)root dual to d = —L
0. Further, we will denoteby

P (resp.P~)the spaceof integralweights (resp.integraldominantweights)of
g, and by pk (resp.P~.)the spaceof affine integralweights (affine integrable
weights)of~atlevel k.We recallthatanaffineweight).~ canberepresented
by its finite dimensionalprojectionand the level k as ). = ). + ku0, where
A0 is dual to k. For conveniencewe will usually use this finite dimensional
parametrization.We will alsodenoteby W the Weyl groupof g, andby W that
of j Thelatter is isomorphicto the semi-directproductW = W x T, whereT

is the long-rootlattice, suchthat for t~= trw, ~2 = w). + ky [31].
The i-gradingfor g andj which will be denotedby deg(.), is definedby the

heightfunction in the root space.Explicitly, for a finite dimensionalg we have

deg(t) = 0, deg(ge) = ht (v) = (p,v), (t E 4, (2.8)

wherep is the elementof t~such that (p, v~’) = 1 for the simple roots cvi,
= 1 = rankg. Then (2.3) is simply the Cartandecompositionof g,

(2.9)
(~EZ1_ (~E4+

A similardecompositionholdsfor the affine Kac—Moodyalgebra~, if wetake
= p + hVAo, whereh” is the dualCoxeternumberof g.
In Vir the grading is defined by the eigenvaluesof —L0. In all threecases,

the zero-degreesubalgebrais Abelian, andthe spaceof semi-infiniteforms has
a weightspacedecompositionwith respectto it. All of the abovecarriesoverto
subalgebrasof anyof thesethreealgebras.

The secondrestrictionis placedon the possiblemodules,we restrictthe class
of g-modulesto the category0 [32,31].

Definition 2.1. A module V is in the category0 if
(i) V hasaweightspacedecompositionV = ~A~P(V) VA, with finite dimen-

sionalweightspacesVA.
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(ii)There exists a set of weights~ such that P(V) C U~,iDo).1),
whereDO).) denotesthe set of all descendantweights~t of)., Do).) = {~e

— /i E 4~}.

If g = a is somesubalgebraof the abovethreealgebras(g, ~or Vir), wewill
consideronly sucha-modulesV which arealsoI-modules,with the weightspace
decompositionas above. A simple consequenceof this definition is that V is
locallyn + -finite~’ , i.e. for any v ~ V the subspace U On + )v is finite dimensional,
where U(n~)is the enveloping algebra of n~.This category 0 of g modules is
ratherlarge— it includesVermamodules,Feigin—FuchsandWakimotomodules,
their tensor products, submodules, quotients, duals, etc.

For a module V in the category 0 weset

C~/
2~(g,V)= V®~2+Sg*, (2.10)

and consider an operatord: C~d/2+F1(g, V) —~ C~I2+ 1(g, V),

d = ~cAJt(eA) — ~:~cAcBbcfABC: + c(/3), (2.11)

where: : denotes the normal orderingwith respectto w
0, and /3 is some constant

element ofg*. Since only a finite number of terms contribute to the action of d on
any given state, this operator is certainly well defined. The following condition
for the nilpotency of d is a classic result (see e.g. ref. [10,111):

Theorem 2.1. If the total centralchargeof the representation

U(eA) = {d,bA} = m(eA)—: ~CBbCfABC:, (2.12)

ofg (g = g,~orVir) inC~’
2~(g,V) vanishes,thenthereexistsaflsuchthat

d defined in (2.11) is nilpotent, i.e. d2 = 0.

In fact, for the algebrasconsideredin thispaper,wemayalwaysset /3 to zero
by modifying the normalorderingprescription,e.g.by orderingwith respectto
the SL(2,ft) invariant vacuumof conformal field theory.Also, we note that
the spacesC0~~/2~(g,V) with the representationdefinedin (2.12) are in the
category0.

We will denotethe correspondingsemi-infinitecohomologyclassesof ghost
numbern by H0d/2~1(g, V), or, sometimes,by H0~~/2~(d,V).

Finally, given a subalgebra h c g one defines a complex C°~/2~(g,h;V)
of semi-infinite cohomologyrelativeto h, as the subcomplex which consists of

~ In fact, this soleproperty may be usedto restrict the modules in a more general approach to
semi-infinite cohomology [33].
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thosechainsin C~I2~’(g,V) which areannihilatedby b(x) and11(x) for all
X E h.

This concludesour reviewof basic factsaboutthe semi-infinitecohomology.
For moredetailedinformationandproofs of the resultscited abovethe reader
should consultoneof the basicpapers [10,11,28], and [33] for an abstract
definition of semi-infinite cohomology as a derived functor of semi-invariants.

3. Basic computational techniques

As wewill seein the following sections,physicallyrelevantcomplexestypically
come equipped with some additional structure. This is usually sufficient to allow
an explicit computationof the cohomology using spectral sequences, a standard
techniquefromhomologicalalgebra(seee.g.ref. [34,35]). In thissectionwewill
reviewsuchmethods,keepingin mindtheirapplicationslateron.Our discussion
will proceedfrom the mostgeneralspectralsequencesto the more specialized
ones,which arisein the computationof Lie algebracohomology.In the latter
casemostof the resultswill alsobe valid for the semi-infinitecohomology,and,
unless some subtletiesare present,we will simplify the notation andwrite n
insteadof oc/2 + n.

3.1. COHOMOLOGY OF A FILTERED (GRADED) COMPLEX

Consideracomplex (C, d) of complexvector spaces,whereC = ~ C~and
the differential d: C’1 —p C’~’.Supposethat thereis an additional gradation,
such that for each order (ghost number) n #2

= ~ (3.1)
kc7L

We will referto the integerk as the degree, and denote by ~k the projectiononto
the subspaceof degreek. Thisgradationby the degreemustsatisfythe following
properties:

(i) Thedifferential d hasonly termsof nonnegativedegree,i.e.

d=d
0+d1+•~=d0+d>, (3.2)

where
d~:CCk’1~. (3.3)

(ii) In eachorderonly a finite numberof nontrivial degreesarepresent,i.e.
for eachn, spacesCk’1 arenontrivial for a finite numberof k’s.

~2 This is stronger than the usual assumption that C must be a filtered complex. A standard

filtration in our case, for which C is isomorphic with the graded object, is given by subspaces
FEC” = Uk>PC~.
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The spectral sequenceassociatedwith such a gradationallows a systematic
computationof the cohomologyclassesH(d,C). It is a sequenceof complexes
(Er,~r)~±

0, suchthat

E0 = C, E1 = H(d0,C), Er+i H(ór,Er), 1 = 1,2 (3.4)

The differentialsaredefinedrecursively,beginningfor r = 0 with the definition
óo = d0. Now, for r ~ 1, noticethat Y’k E C representsanelementin Er (possibly
a trivial one) if andonly if thereexistWk+l Y

1k+r—1 suchthat

~id(~k+~k+1+...+~k+r_1)O, fori=k k+r—l. (3.5)

Thenwe maydefineor: Er Er via

0rWk = ~k+rd(Wk + ~k+1 + ... + Wk+r~!)~ (3.6)

TheE
1 term of thissequenceis obviouslywell defined,because(3.2) together

with d
2 = 0 imply that d~= 0. To verify that the subsequenttermsare also

well defined— in particular,that0r arenilpotent operatorsin Er — becomesmore
and more tedious, so one usually resortsto more abstracttechniques[34,351
ratherthanusingthe explicit formulae (3.5) and (3.6). Nevertheless,it is quite
illuminatingto work out by handatleastthe next two terms (see,e.g.ref. [361).
It thenbecomesclearthat the elementsof Er are thosecohomologyclassesof
d

0 which can be extendedto approximatecohomologyclassesof d through r
degrees.

A spectralsequence(Er,
0r) becomesa useful device provided it converges,

which meansthat the spacesEr stabilize,i.e.

ErEr+iz...Ec,~, (3.7)

for somer > 1. Obvious1y,this requires

(3.8)

In sucha caseonealso saysthat the sequencecollapsesat Er.

As might be expected,onecanprovethefollowing fundamentaltheorem(see,

e.g. ref. [34,35]):

Theorem3.1.For a gradedcomplex (C, d) asabove

~ H(d,C). (3.9)

Mostofspectralsequences,whichwewill encounterlaterin thispaper,collapse
at the first term,becauseE

1 turns out to be nontrivial only in eitheroneghost
numberor onedegree(or both). As the differentials

0r, r> 1, increaseboth the
orderandthedegree,theymustvanish,which impliesE

1 ~ E~,or,equivalently,
H(d0,C) H(d,C). Clearlythis happycircumstancewill often bethe resultof
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a clever choicefor the definition of degree,which splits the calculationin this
opportuneway.

3.2. SPECTRAL SEQUENCESOF A DOUBLE COMPLEX

With adoublecomplex (C, d, d’)

d: C’~’~—~ ~ d’: C’°” —~ C~°”÷1, (3.10)

d2 = d’2 = dd’ + d’d = 0, (3.11)

onecan associatetwo spectralsequences,(Er, Or) and (Er’, 0), arisingfrom the
gradingofthe underlyingsinglecomplex (C, D),.

= ~ ~ D = d + d’, (3.12)
p+q=n

by p andq, respectively.In the first casewe haveC~= ~qChi~~,which gives

~ H(d’,C) O~= d, (3.13)

while in the secondcaseC~= ~~C’°”, and

E~~ H(d,C) 0 = d’. (3.14)

One should note that the spacesEr andE in thesespectral sequencesare
doublygraded,andthe actionof the induceddifferentialsOr and0 with respect
to this gradationis

~P,q , ~~~p+r,q~r+I 15)
E’p,q .~ ~/P_r+l,q+r (3.16)

In bothcasesthe limit of the spectralsequenceE~or E~, if it exists,yields
thecohomologyofthe complexC with thedifferentialD = d + d’. Thefollowing
frequentlyusedtheoremsummarizesin which sensethe orderof computingthe
cohomologiesof d andd’ canbe interchanged.

Theorem3.2. Supposethatin adoublecomplex(C, d, d’) bothspectralsequences
(Er,Or) and (E~,O~)collapseat the secondterm. Then

~ HP(d,H~(df,C)) ~ ~ H~(d’,HP(d,C)). (3.17)
p+q=n p+q=n
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Proof [34] We simply have

~ HP(d,H~(dI,C)) = E~)~q
p+q=n p+q=n

= H~(D,C)

= ~ = ~ H~(d’,H1~(d,C)).
p+q=n p+q=n

(3.18)

3.3. “SPLIT AND FLIP” SPECTRAL SEQUENCES

Throughoutthis subsectionwe assumethat g is either g, or or Vir or a
subalgebraof those,and that all modulesare highestweight modulesin the
category0. We recallthat in particularthis meansthatanymodule V is alsoa
moduleoft,Ior Vir0, andthereis asingle stateVA, with thehighestweightA, and
the weightspacedecompositionof V is V = ~A�P(V) VA, whereP(V) C D(A).

Ofparticularinterestis thespecificcasein which V is thetensorproductof two
highestweightmodulesV1 andV2, with highestweightsA1 andA2, respectively.
We showherehow to constructa spectralsequencethat allows an estimateof
the relativecohomologyof the tensorproductmodule V1 ® V2, in termsof the
cohomologiesof V1 and V2. This will be achievedby introducing a family of
degreeson the complexC (g, V1 ® V2),which are anaturalgeneralizationof the
f-degreedefinedin refs. [11,28].

Let f be an arbitrary integervaluedfunction on the root lattice, suchthat#
3

~ 0, f(n
1c~1+ fl2t~J) = n1f(cv~)+ n2f(QJ), (3.19)

for all simpleroots ~, �t~,andintegersn1 and n2. Examplesof such functions,
which we will considerin the nextsection,areobtainedby taking (for g = g)

= (p,wcv), ~E4, 0) E W, (3.20)

or similarly (for g =

= (~,wcs), ivEA, WE W. (3.21)

We will denotesuchf’s by f~.
Obviously,usingf, we candecomposeg into a direct sum

g=ntE~n~, (3.22)

wheren~and n
11 are subalgebrascorrespondingto the positive andnegative

roots defined with respectto f. We may also extend f to a highestweight

~ Here, and in the remainder of this section, we use the samenotation for the roots andweights
of all three algebras.
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module V (with highestweightA) by setting

f(v)=f~t—A), forVEV2. (3.23)

Similarly, wecan usetheweightspacedecompositionto extendf to theghost
Fock space,.~, by settingf(wo) = 0. Note that in this casethe ghostsand
anti-ghostscorrespondingto I will not changethe valueoff.

Let us concentrateon the relativecohomologyof g in V1 ® V2. One of the
effectsofpassingto the relativecohomologyis thatwe drop theghostsandanti-
ghostsof I, i.e. .Fgii,rei ~ A (n

11 ~ n~)*~This spacedecomposesinto a tensor
productFgii,rei = ® ~ A (n~i)* ® A(~~)*• Combiningthatwith the
tensorproductstructureof themoduleitself,we areledto considerthefollowing
decompositionof the spacesin the complex:

C’1(g,t;V
1®V2) = ~ ~ (3.24)

p+q=n A

whereCA (.,.) denotesthe subspacewith the weight)..Note thatbecauseC’1 (.,.)

is amodule in category0, the sumin (3.24) is in fact finite bothwith respect
to n and).. (This is clear for g = g, and for ~ andVir becomesobviousif we
rememberthat all ghostandanti-ghostcreationoperatorshavepositiveenergy,
which is a part of theaffine weight.) We emphasizethatatthis point (3.24) is
merely an equality betweenvectorspaces,andthat the assignmentof n’i to V1

andn~to V2 is completelyarbitrary.
However,it is easyto seethat thedifferential d in COg, I; V1 ® V2) is of the

form d = d_ + d~+ . . •, whered_ andd~arethedifferentialsin CA (n~i,V1) and
C_2(n~,V2), respectively,while the additionaltermscorrespondto theactionof
n~iandn~on V2 and V1, respectively,andthree-ghosttermsthatarisewhenn~i
andn~do not commute.Thisform of the differentialsuggeststhe introduction
of a degreeso that, at the first term of the spectralsequence,(3.24) becomes
an equalitybetweencomplexes.Sucha degree,which we denotefdeg, maybe
definedvia

fdeg((V1®w1)®(V2®w2))=f(v1)+f(w1)-f(v2)—f(w2), (3.25)

wherev1 E V1, v2 E V2, w1 e andw2 E .T~.Note that on the ghosts,

fdeg(flcoflbpwo) = ~~f(ct)j—~If(/3)~. (3.26)

In otherwords eachghost ca increasesf by tf(~)~~while b~decreasesf by

If(/3)I. By virtue of the triangle inequality satisfiedby f(.)~appliedto the
three-ghostterms,and recallingthat 11(t) 0 on the subcomplexof relative
cohomology,it is easyto checkthat the fdeg = 0 term of the differential in
the complexon the 1.h.s. is indeedthe sumof the differentialsin complexeson
the r.h.s.of (3.24), i.e. d0 = d~+ dJ As we havearguedabove,this filtration



236 P. Bouwknegtet al. / Semi-infinitecohomology

is finite, andso the correspondingspectralsequenceconverges.Thus we have
shownthe following theorem.

Theorem 3.3.Thereexistsa spectralsequence(Er,Or) suchthat

~ ~ (3.27)
p+q=n A

~ H’1(g,t;V1®V2). (3.28)

Forobviousreasonswewill referto thissequenceas the“split andflip” spectral

sequence.

3.4. REDUCTION THEOREMS

Let usnow considerthesituationwhenthecohomologyofoneofthecomplexes
on the r.h.s. of (3.24) is particularlysimple; namely, it hasonly one state,at
ghostnumbernumberzero,e.g.

H~(n~,V2) = (3.29)

Then, for eachn, the sum in (3.27) collapsesto just oneterm with p = n. In
fact, as wewill now show,the entirespectralsequencecollapses,andwe obtain
the following reductiontheorem.

Theorem 3.4.For a module V2 satisfying(3.29)the spectralsequenceof theorem
3.3 collapsesat E1 andwe obtain

~ (3.30)

Proof We observethat in the caseof relativecohomology,thereis an additional
relation betweenthe fdegof the two factorsin (3.25),namely

[f(~’i) +f(w1)] + [f(v2) +f(w2)] = -f(A~ +A2) = const. (3.31)

This showsthat E” canbe nontrivialin only onef-degree— thesameonefor all
n. Thus the sequencemustcollapse,as wehavediscussedat the endof section
3.1.

For f = —J1,1 = —degthistheorembecomesthe reductiontheoremof ref.
[28].
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3.5. RESOLUTIONS

A direct calculation of the cohomologyon a given module will usually be
complicated,andyet onecanoften find specialmodulesfor whichthe calculation
is immediate.Foran arbitraryg-module,V, apromising— andusuallynecessary
— line of attackis to find adescriptionof V in termsof thesespecialmodules.In
fact, the possibility of carrying out sucha procedureis a goodtestasto whether

oneis working in a sensiblecategoryof modules!A decompositionof V into its
“building blocks” is achievedin terms of a resolution.

Definition 3.1. Wesaythatacomplex(R,O)ofg-modulesW2and0: ‘R’1 7?.n+1

intertwiningwith the actionof g is a resolutionof the g-module V if

H’1(O,7~)~ O~’°V. (3.32)

Resolutionsaresaidto beone-sidedif we can set n > 0, or two-sidedif n E 1,
finite or infinite, etc.

A typical applicationis asfollows. Supposewewantto computeH(g, V), and

weknowhowto write downaresolutionof V in whichH(g, W~)arecomputable
andsimple. By replacingV with its resolutionwe have

H’1(g,V) = H’1(g,H°(O,lfl). (3.33)

Clearly the form of the r.h.s. suggeststhat we considerthe doublecomplex
(C,O,d), C~’m = ® f\mg~,and see whether theorem 3.2 can be applied
to changethe orderof cohomologiesin (3.33). If so, then we mayexploit the
simplestructureofH(g,1~’1).Indeed,in all the caseswe discusslateron this is

the bestway to proceed.

4. Resolutionsof highestweight modulesof affine Kac—Moody algebras

In thissectionwereviewtwo classesof resolutionsof irreduciblehighestweight
modulesof affine (untwisted) Kac—Moody algebra~: a one-sidedresolution
in termsof Verma modules,anda set of two sided resolutionsin terms of
Wakimotomodules.Similarconstructionsfor the Virasoroalgebrawill bebriefly
summarizedin section6.

4.1. VERMA MODULES AND THE BGG-RESOLUTION

Recallthata VermamoduleMA of j with highestweightA, is freelygenerated
by iL from a highestweight state ‘0A such that tWA = 0, n E ~+ and tVA =

A(t)VA, t E 1. We will denoteby M,~the contragradientVerma module [37],
which is dual to MA with respectto the canonicalpairing in U (i), andco-free
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with respectto íì+. It turnsout that both of thesemodulescan alsobe defined
in a rathersurprisingmanner[32,10].

Theorem 4.1.A Verma module MA of ~ is completelycharacterizedby thefol-
lowing two conditions:

— MA is a modulein category0.
— As a1-module,

H~12~’1(ii_,MA)~ O~’°C~. (4.1)

By Poincaréduality in semi-infinite cohomology [11,28], a similar theorem
holds for the contragradientVerma module M~,exceptthat one must replace

iL with ii~.
Proof We sketchthe proof [32]. To calculate(4.1), introducean (increasing)
filtration on the complexC~’2~(~, MA) defined,on the basisof monomials,
by

F~C= {v = e~ e_
1~,b_fl.. . b~v~ r + s <p}. (4.2)

Using the fact that MA is freely generatedby ~i one finds that the first term
in the associatedspectralsequenceis the so-calledKoszul complex [29,35], for
which it is easyto showthat the cohomologyis one-dimensionalandgenerated

by VA. The spectralsequencethencollapsesto give (4.1). Note that one uses
here only 1L ®1-modulestructureof MA!

As for the oppositepart of the theorem,let V be a module in the category
o whosecohomology is the sameas that of MA. Since in (4.1) n < 0, we
haveH0d/

2+o(iI_, V) ~ V/iL V. (Note that sucha characterizationwould not
be valid if n > 0 termswere presentin the complex!) Thus the module V is
generatedby U (Ii_) actingon the highestweight statev~,correspondingto the
nontrivial 0thcohomology.Equivalently,wehavea surjectiona from theVerma
moduleMA onto V, definedby a(VA) = v~.This gives a short exactsequence
0 —* K —~ MA —~ V —~ 0, where K = ker a.From the correspondinglong exact
sequencein cohomology [35,34] we find that the cohomologyof K must be

trivial. This impliesthat K = 0, andthus V ~ MA,asotherwisewewould have
a nontrivial module in the category0 with zero cohomology,which is clearly
impossiblesinceit contains“highest” weights.

Before we formulatethe next theorem,on the constructionof resolutionsin
termsof Vermamodules,we recallthat for a given w’ E W, the length of w’ is
definedas,~(w’)= c1( w’)I, in termsofthe set ofroots~w’) = 4+ flw’(A_)
[31]. We also introducea twisted action, denotedby *,of W on the weights,
w’*A ~iT’(A + p) — p + (k + hv)y forw’ = l~~~if’E W, A E

Theorem 4.2.Let A e P~be an integrableweightof ~. Thenthereexistsa res-
olution of the irreduciblemodule LA in termsof Verma modulesgivenby the
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complex (M~,O(’U), n <0, suchthat

= ~ (4.3)
{w’EW IF(w’)=—n }

andthe differentials O~’~are determined,up to combinatorialfactors,by the
singularvectorsin MA.

Proof Seeref. [32] for the proof for finite dimensionalLie algebrasandrefs.
[38,39] for its generalizationto Kac—Moodyalgebras.

4.2. WAKIMOTO MODULES AND FREE FIELD RESOLUTIONS

It is natural to askwhetherany otheri-modulescanbe characterizedin a
way similar to the cohomologicalcharacterizationof Verma modulesandcon-
tragradientVerma modules,using subgroupsisomorphic with iL and/orñ.~.
This questionmotivatedthe following constructionof Wakimotomodules[40]
proposedby Feigin andFrenkelsomethreeyearsago [23].

For agiven w E W, considera subgroupi1~= . iI~ W~n+w~’,where,

formally,w~= limN~ WN, WN = WINp E W. The actionof this infinite twist
shouldbe understoodas

iI~={xE~l~N0VN>N,xEWN.ii+}. (4.4)

Explicitly,
= ~ i—, (4.5)

~EA~

where

= = nO +WcxIaE4+,flEi}U{a~ = nO~n>0}, (4.6)

i.e. iI~is a sum of the current algebrabasedon n~ = wn+W~ (a twisted
nilpotent subalgebraof g), andthe positivemodesof currentscorrespondingto
the Cartansubalgebrat. An equivalentwayof characterizing4~isas thoseroots

for which (see section3.3) fwN(&) = (~,WN~) is positive for N sufficiently
large.

Let usalso introduce
= A~flz1~, ~ = (—4~) fl4~, (4.7)

anddenotethe correspondingsubgroupsby iI~’~and~ respectively.We

thenhavedecompositions~ = 11~E~I~11’4~andiI~= uI~’~~ uI~’~.Also, in
analogywith the usuallength 1? above,onecanintroducea “twisted length” £~
on W, defined by [23,25]

= ~w,(+) (w’)I — ~ (~1)~, ~w,(±) (w’) = fl w’(4).

(4.8)
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With thissomewhatelaboratemachinerywe have [23]

Definition 4.1. For w E W, a Wakimoto moduleF~”of an affine Kac—Moody
algebra~ is a modulesuchthat

— F~’is a i-module in category0.

— As aI-module
H~12~’1(ui~,F~”)~ O’1’°C~. (4.9)

To show that this definition is not vacuous,one mustconstructexamplesof
suchmodules. In conformal field theoryonecan give an explicit realizationof
Wakimoto modulesas Fock spacesof a set of conjugatefirst orderbosonicfree

fields of conformal dimension (1,0) (one such pair for every root (~E 4~’),
and a set of free scalar fields with backgroundcharge (as many as the rank
of g) (seee.g. ref. [41] and the referencestherein).The most frequentlyused
realizationappearsto befor w = 1, but, as we will seein the next section,the
ability to implementthe generaltwist plays a crucial role in the constructionof
a resolutionfor the cosetmodule.

Althoughfree field realizationsof theWakimotomoduleshavebeendiscussed

at somelength in the literature, their cohomologyhasonly beenconsideredin
ref. [23]. Let usbriefly outlineherea proofof (4.9).

As with Vermamodules,the Wakimotomodules~ constructedthusfar are
particularly simplewhenviewedas ~ I modules,namely,

F~~ (4.10)

We identify hereU(~’~) with the Verma moduleofÜ~built on the vacuum

annihilatedby the generatorsin ‘~. Similarly we definethe contragradient
module of ii~in the secondfactor. Finally, iI~actstrivially on the third factor,
which is introduced to shift the highestweight to the desiredvalue. In this

explicit realizationthe cohomologycomputationis almosttrivial. Consideran
fdegas in section3.3 with f = f~= limN,~j~..IdentifyingU(ñ~’~)with

V
1 andU(i~~~~)*with l~,thefirst term of the resulting“split andflip” spectral

sequenceis given by

E1 ~ ~ H~d/

2 (ñ~’,U(Ii~’~))®
n<0 m>0

(4.11)
and, by virtue of theorem4.1, it is nontrivial only for m = n = 0. Thus the
sequencecollapses,andwe obtain (4.9).

Thereremainsthe intriguing mathematicalquestionas to whetherWakimoto
modulesareuniquelydeterminedby their cohomology.It is not too difficult to
showthat the cohomology(4.9) forcesthe moduleto be free overuI~’~,and
co-freeoverui~~~ whichof courseis manifestin theexplicit realization(4.10).
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To provethisonecanconsidertwo Hochschild—Serrespectralsequences#4 [42]
correspondingto two subgroupsofñ~.Specifically, oneeasilyseesthat the dif-
ferentiald in thecomplexC (II~,F) canbesplitinto asumoftwo anticommuting
differentials,d = d~ + d, correspondingto n~’~and~ Thus we have
a structureof a doublecomplex.The two Hochschild—Serrespectralsequences
are then simply thosearising via the usualbi-gradingof this double complex,
asdiscussedin section3.2. After somerather subtleanalysis,the freenessand
co-freenessessentiallyfollow from theorem4.1. However, we were not ableto
completethe argumentfor the uniquenessof the module,andwe arenot aware
of any existingexplicit proofof this fact.

As expectedwe havethe following resolutions [23,25].

Theorem 4.3.For any A E P~iandw E W, thereexistsa resolution of LA in

termsof Wakimotomodulesgiven by a complex (F’1),Ow(’1)), where

—

— ~L7 w’’A’

{w’EW ;4~(w’) =n }

In many applications in conformal field theory and topological field theories
consideringonly integrableweightsis not sufficient.Rather,wehaveto consider
fractional levels,say

k +hv ~, gcd(p,p’) = 1, gcd(pl,rv) = 1, p>hV, p’>h,

(4.13)
andweightsof the form

A = ~ — (k + hv)A~, (4.14)

with ~ ~ pc_h” andAt—~E ~ Here, rV is the “dual tier number”of~.
We recallthat in the simply lacedcaseh = h~’P~= P~andrV = 1. Weights
of the form (4. 14) area subsetof theclassof so-calledadmissibleweights [43].

It turns out that the entirediscussionofthe caseof integrablerepresentations
can easilybe extendedto this moregeneralclassof admissibleweights.Onecan
constructacomplexas abovein which

= Tw~~A+)(k+hv )A()’ (4.15)
{w’EW~4~(w’)=n}

andthedifferentialsarepreciselythesameas in the resolutionfor the integrable
weight~ [26,27]. We expectthatthiscomplexprovidesa Fockspaceresolu-
tion of theirreduciblemoduleLA. For sl(2) (andW = 1) thishasbeenproved
in ref. [24].

~ We thank E. Frenkel for suggestingthis line of reasoning.
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5. BRST structure of G/H coset theories

From the point of view of representation theory for affine Kac—Moody alge-
bras,the problemof constructinga cosetmodelcanbe formulatedas follows:

Given a pair of algebras (j h), h c j anda correspondingpair of weights
(A,).) (notnecessarilyintegrable),constructthecosetmoduleL~/AHdetermined

by the decompositionof L~into irreducibleh-modules#5

L~ ~ ~L~”®L~’. (5.1)

Althoughit is possibleto proceedin suchgenerality(seee.g.ref. [44] ), we will
assumeherethattheembeddingof h in~ arisesfrom a regularembeddingofh in
g, sothatonecan identify the Cartansubalgebrasof h andg andchoosethe set
of positiveroots of h to be a subsetof thosein g. Also, for regularembeddings,
the Dynkin embeddingindexof h in g is j = 1. It is thenclearthatanyhighest
weighti-module in the category0 is at least locally uI~finite as an h-module
(in caseswhich are relevantfor applicationsthesemodulesare in fact in the
category0 of h-modules).

Recall that for the standardG/H cosetmodels [13], which will be ourmain
interesthere,A E Pr’, while the sum in (5.1) runsover). E ~ In that case
we may in fact identify LA,A with the set of h-singularstatesin L~atweight).,
andwrite down in termsof (semi-infinite)cohomology

LA,A ~ H~12~°(ui~,L~). (5.2)

(Note that for 11~(the ordinaryandthe semi-infinitecohomologiescoincide.)
c’o/2+. ~H GHowevermathematicallyinteresting,thecomplexCA (n+, LA) is not very

attractivefor a physicistas it only hasstateswith positive ghostnumbers,and
thus it cannotarisein a covariantmannerfrom anyconformalfield theory. In-
stead,thecomplexeswewantto concentrateon can bederivedin theframework
of the BRST quantizationof gaugedWZW-models[16], andcorrespondto the
constraintsh 0 on a largermodule L~® ~ where V

2~is a suitablehighest
weighth-modulewith highestweight).’ determinedin termsof).. Thenthespace
of physicalstatesis computedas the cohomologyclasses

H~
12~(h,L~®VA’), nEi. (5.3)

The level k’ of the affine weight).’ must be k’ = —k — 2hV (wherehV is the
dualCoxeternumberof h), sothat the total centralchargeof h — including the
ghostscontribution — vanishes,andthus the BRST operatoris nilpotent [16].
The problemis to determinethe appropriatemodule VA, andto computethe

~ Clearly one may often leave off the superscripts G, H, and G/H without causing confusion.
We will do that wheneverpossible, and conversely,where it is essential we will include them.
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resultingcohomology.For easeof presentationwe restrictour attentionto the
relativecohomology.The absolutecohomologyfollows in the usualway [11].

5.1. COHOMOLOGY OF THE BRST COMPLEX OF THE COSET MODELS

For a given cosetmodel, the BRST operator corresponding to the differential
of thecomplexwhich computes(5.3) maybe written explicitly in termsof the
currentsas [16]

dim h

d =: Ca(z)[Ja(z) + ~J~(z)]:, (5.4)

wherethe normal ordering is with respectto the SL(2,Ilfl vacuum,andthe Ja

areh-currentson the productmodule.Sincethe ghostandanti-ghostfieldshave
conformal weights0 and 1, respectively,the physical vacuumw0 differs from
the SL(2,l~)vacuumIO)~,in the ghostsectorby the zeromodesof the c’~(Z) in
n~,andthusthe weightof w0 is equalto ~ = 2pH.

Fromthe decomposition(5.1) it is clear that

H~
2~(h,I;L~® J~~)~ ~LAA®H~’2~(h,~Lf’® V

2~). (5.5)

Thus one only needsto choosean appropriateh-modulel’~,andcomputethe
cohomologyof LA ® VA’ for irreducibleh-modulesLA. In particularone would
like to understandwhetherfor someJ~,the sumon ther.h.s. collapsesto justone
term,asin suchacasethel.h.s. wouldgive usacohomologicaldescriptionof the
cosetmodulewhich,unlike (5.2), is “covariant” with respectto the subalgebra
h. Recalling thereductiontheoremin section3.3, andthe cohomologies(4.1)
and (4.9), it is natural to seeksuch l~’samongWakimoto modulesand/or
Vermamodules.Obviouslythischoice is also naturalfrom the point of view of
the gaugedWZW-model.

We will nowproceedto compute(5.5) for VA’ = F~andMA’. First aprepara-
tory result,which is an obviousconsequenceof theorem3.4 andthe cohomolo-
gies (4.1) and (4.9) above.

Lemma5.1.For a tensorproduct,F~® f~wwo(w0 is the longestelementin the
Weyl group,W”), of twooppositelytwistedWakimotoh-moduleswith arbitrary
weights).and).’,

H/
2~’~(h,I;F~®F~0) ~ O’1’00A_2p,A’ C. (5.6)

Similarly, for the Vermamoduleswehave

~ O’1’°O~,,,~C. (5.7)
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(For h = sl(N) andw = 1, the aboveresult was already proved in refs. [18—
22] usingexplicit realizationsof bothWakimotomodules.Oneshouldnotethat
in the presentderivationone only usescohomologiesof separateWakimoto
moduleswith respectto complementarysubgroupsof h.) By choosingasuitable
resolutionoftheirreduciblemoduleL~’we cannowconstructa doublecomplex,
as discussedin section3.5, andusingthe abovelemmaessentiallyreadoff by
inspectionthe following results.

Theorem5.2.Let). bean integrableweightof the Kac—Moodyalgebrah atlevel
k andiI’4~ a twistedsubalgebraof h correspondingto a fixed W E WH. Then

- As aI-module

H
2~’1(~,LA) ~ ~ (5.8)

{w’EWIt,~(w’)=n}

— The following projection holds:

C. (5.9)
{w’�W IF~(w’)=n}

— The same result holds for the Verma module MA’ (resp.contragradient
Verma module Mi’,) if one substitutesu1~—~ iL (resp. ui~)and £~(w’)
—~(w’)(resp.£(w’)) in (5.8) and (5.9).

We should note that the first part follows directly from the mereexistence
of a resolutionof LA” in termsof Wakimoto modules (seetheorem4.3), and
their cohomology.It wasfirst derivedin ref. [23] asa generalization,to twisted
subalgebras,of the Bott theorem(part 3 of the abovetheorem)for integrable
representationsof Kac—Moody algebras[38,45]. Onemayalsoobservethatfor
each n the directsumin (5.8) consistsof oneterm for h = sl(2), andis infinite
for higher rankalgebras.On the otherhandthe 0-function in (5.9) will always
project out zero or one term, the latter when —).‘ — 2p is in the imageof an
integrableweight).underthe twistedactionof somew’.

One can prove similar theoremsin the caseof admissiblerepresentations
whereoneshoulduseresolutionsasin (4.15). We will leavethis as an exercise
for the reader. (Thesl(2) casehasbeendiscussedin ref. [21].)

Finally, by puttingeverythingtogetherwe maysummarizethegeneralcaseof
the BRST cohomologyfor G/H modelsin the following theorem:

Theorem 5.3.Considerapairof Kac—Moodyalgebras(~, h), anintegrableweight
A E ~ andan arbitraryweight).’ E pH,k’ wherek’ = —k — 2h”. Then
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— H~dI
2+’1 (h,I; L~® F,

1l,~’~~~0)is alwayszero or one-dimensional,andcan be
nontrivial for atmost onen,

H~’
2~(h,I; L~® FWW0) = LA(’1,)I~(A~)2p. (5.10)

{w’EW F,,,(w’)=n}

— In particular,if we take).’ = —). — 2p, where). is an integrableweight,
). E ~ we have

~ = O’1’°LA,A. (5.11)

5.2. FREE FIELD RESOLUTIONS OF THE COSET MODELS

Thelast theoremaboveprovidesthe crucialsteptowardsthe constructionof
a resolutionof the cosetmodule,~ in termsof moremanageablemodules
— one must now simply replacethe irreducible~ module L~ in a controlled
way. Here we will showhow this is done,andexaminethe consequences.Let
(7~A~0) bearesolutionof LA in termsof modulesin thecategory0, e.g.in terms
of Verma modulesas in theorem4.2 or in termsof Wakimoto modulesas in
theorem4.3. Considerthe doublecomplex (CA,A, drei,d’) with spaces

Cm,n ,-.~.
7~m Fuw0 ~ 5 12A,A’ — A ‘~ A’ gh,rel

andwith differentialsd = dre1 (the BRST operatorof the relativecohomology)
andd’ = (—1 )~O,wherethe prefactorcountingthe numberof ghostsis intro-
ducedso thatd and d’ anticommute.Let D = d + d’ be the total differential
in thiscomplex.

Theorem5.4. Fora pairof Kac—Moodyalgebras(j Ii) anda correspondingpair
of integrableweights (A,).), the cohomologyof the complex (CAA2P, D) de-
fined aboveis

H’1 (D,CA,22p) ~ O’1’°LA,A. (5.13)

Proof The prooffollows from the first spectralsequencein section3.2 andthe-
orem 5.3 above— simplynotethat theE1-termgiven in (3.13) hascohomology
given by (5.11),andthusthe spectralsequencecollapsesat E2.

In generalonemustbecarefulherein which orderthecohomologiesof d and
d’ are computed,as the otherspectral sequencecorrespondingto this double
complexmaynot collapseat thesecondterm! It does,however,collapseif one
choosesthe resolutionof LA to bein termsof Wakimoto modulesof ~ that, as
h-modules,areoppositelytwistedto F,~~”~°;i.e. the subalgebrasÜ~ and~ of
h act freelyandcofreely,respectively.Thus,in this caseonehasfurtherreduced
the problem,so that the resolution is via acomplexwhosespacesarejust the
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cohomologyspacesH~/
2~(d, 7~’1® FA’~”~°),andwhosedifferential is just that

inducedfrom 0 on thesespaces.
Whenthe resolutionof L~ is in termsof Wakimoto modules,we will call the

complexof theorem5.4 a free field resolutionof the G/H cosetmodel.
Ofcoursethereareotherwaysof splitting thedifferentialD in thiscomplex.In

particular,onemay try to eliminatethe secondWakimoto moduleby usingthe
reductiontheorem.This caneasilybe achievedby introducingf

1,-degree.The
0th orderdifferential with respectto f,~-degreeis D0 = d’ + d~+ d~,where
d+ are the BRST chargescorrespondingto iI~ andii~ = ~“°, respectively,
preciselyas in section3.3. Usingthe reductiontheoremweobtain thena smaller

complex, (C(red)Ay, d+, d’), in which

C~)A;~ (R~~ (5.14)

where ( )~ denotesthe projection onto the subspacewith the weight A. Ob-
viously, the cohomology of this reducedcomplex also yields the samecoset

module.
If we carriedout the samereductionprocedurestartingfrom a resolutionof

the cosetmodule,butwith MA’ ratherthanF,~”°,we would arriveat theoriginal
“free field” realizationof thecosetmodel asconstructedin [1 7].

In the lattercaseonemayevenfurther reducethe complexby evaluatingthe
BRST cohomologyof d~.At ghostnumberequalto zero it clearly consistsof
the subspaces~ of singularvectorsin R

m. Although it is not clear whether
the spectralsequence(whose first term we havejust computed)convergesat
the secondterm#6,onecangive aseparate(andrathersubtle) argumentwhich
provesthat the complex (SA,A,0) yields a resolutionof the cosetmodule.Note
that this complexisjust a naiveextensionof (5.2), andit is the changeof order
in which two cohomologiesareevaluatedthat introducesthecomplicationwhich
mustbe dealtwith separately.We refer the readerto ref. [17] andref. [41] for

a morecompletediscussion.

6. BRST cohomologyof 2D gravity

In this sectionwe will showhow the resultsof the previoussections,in par-
ticular the reductiontheorem,canbe appliedto computephysical statesfor 2D
gravity coupledto c < 1 conformalmatter. The relevantalgebrain this caseis
g = Vir, while the interestingmodulesare the Virasoro Verma modulesMAE,

irreduciblemodulesL
4,~andthe so-calledFeigin—Fuchs(or Fock space)mod-

ules F~,Q.Verma modulesand irreduciblemodulesare both labelledby their
conformaldimension4, i.e. L0 eigenvalueof the highestweight state,while the

~ Note that we have changed the order in which the cohomologiesof d+ and d’ are computed.
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Feigin—Fuchsmodulesarelabelledby the momentump andbackgroundcharge
Q of the free scalar field (we refer to ref. [5] for any requiredclarification
of the conventions).While the gravity sectorwill alwaysbe representedby a
Feigin—FuchsmoduleF~L,QL,for the mattersectoronehasthe choiceof taking
a Feigin—Fuchsmodule F~M,QM (gravity coupledto a free scalarfield, i.e. the
two-dimensionalstring),or an irreduciblemoduleLAMcM (gravity coupledto a
minimal model).

The crucial differencewith the affine Kac—Moody caseis that, contraryto
the Wakimoto modules,Feigin—Fuchsmodulesin generaldo not havea sim-
ple cohomology due to the fact that they are neither free nor co-free over
part of the Virasoro algebra.As a consequenceone finds that the cohomol-
ogy H (Vir, Vir0 F~MQM® F~L,QL) is alreadynontrivial, i.e. discretestatesoccur,
contraryto whatwe haveseenfor the analogouscohomologyin theaffine Kac—
Moody case.Nevertheless,someof the techniquesof the previoussectionscan
be appliedby usingspecificpropertiesof Feigin—Fuchsmodules.For instance,
by makinguseof the fact thatc > 25 FockmodulesF~Qareisomorphicto either
the Verma module M4,~or the contragradientVerma moduleM~,depending
on whether~(p) = sign(i(p — Q)) is positiveor negative,respectively[46],
we find by applyingthe reductiontheorem

H’
1 (Vir, Vir

0 LJM CM ® F~LQL) ~ H’~(Vir~(~L),LJ~,C~f) i_~~ (6.1)

In orderto computeH’1 (Vir~(pL), L~McM ), wetakearesolutionofLAM,cM in terms
of (contragradient)Verma modules[47], dependingon i~(p’~),andproceedas
outlined in section3. Theresultcanbe summarizedas follows [3—6,48]:

Theorem6.1.Let (7~’1~,d’)be a resolutionof L4~,whereeach~ is a direct
sumof Verma modules,contragradientVerma modulesor Feigin—Fuchsmod-
ules. LetJ~ be the conformal dimensionof any one of the modulesin ~
Denote((4,c) = {l _4(ul)}. For 4 = 1 ~4(n), for somen, defined(4) =

(thesedefinitions for 8(4,c) andd(4) do not dependon the specific resolu-
tion). Thenwe have —

(i) H(Vir,Viro;LJMCu ®F~L,QL)~ 0 iff4(pL) E E(4McM)

(ii)ForJ(pL) E~(4M,CM) we have

dim H’1 (Vir, Vir0 LAM CM ® F~L,QL) = Ofl,~(pL)d(J(pL)) . (6.2)

7. Concludingremarks

We have shownin this paperhow various methodsof homological algebra
can be applied to computeBRST cohomologiesthat arise in conformal field
theory.The centralrole hereis playedby a reductiontheoremwhich, roughly
speaking,allows one to project out subspacesof a moduleby first tensoringit
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with a suitablehighestweightmoduleandthecomputingthe BRST cohomology
of the productmodule.In particular,we haveusedthis techniqueto construct
free field resolutionsof G/H cosettheories,by imposingthe BRST operator
on the usual free field resolutionof the WZW-model of G tensoredwith an
appropriateFock spaceof the free field realizationof the WZW-modelof H.

Thesenew resolutionsof cosettheoriesshouldallow oneto repeatthesamesteps
thathavebeencarriedout in the caseof theusual (i.e. ungauged)WZW-models
(seee.g.ref. [41] andthe referencestherein).The most importantoutstanding
problemin this direction is the constructionof screenedvertex operators,and
the computationof the fusion rules.

P.B.would like to thankthe organizersof the XXV KarpaczWinterSchoolfor
the opportunity to presenttheselectures,andthe Aspen Centerfor Physicsfor
hospitalitywhile theywere written down. K.P. would like to thankthe Theory
Division at CERN for hospitalitywhile someof the work was carriedout. We
would like to thankE. FrenkelandA. Voronov for discussions.
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